Remarks on Alice Roth's Fusion Lemma

Dieter Gaier
Mathematisches Institut der Universität Giessen, 63 Giessen, West Germany

Communicated by Richard S. Varga
Received February 3, 1982

1. Introduction

In the study of rational approximation in the complex plane a fundamental role is played by the so-called "Fusion Lemma" of Alice Roth (see [1, p. 113 ff$]$). Let K_{1}, K_{2}, k be compact sets in \mathbb{C} with $K_{1} \cap K_{2}=\varnothing$. Then there exists a constant A depending on K_{1}, K_{2} only such that: Given two rational functions r_{1}, r_{2} with

$$
\left|r_{1}(z)-r_{2}(z)\right| \leqslant 1 \quad(z \in k),
$$

there exists another rational function r with
$\left|r(z)-r_{1}(z)\right| \leqslant A \quad\left(z \in K_{1} \cup k\right) \quad$ and $\quad\left|r(z)-r_{2}(z)\right| \leqslant A \quad\left(z \in K_{2} \cup k\right)$.

It is easily seen that the important case is when k meets both K_{1} and K_{2}. We can say, then, that r connects r_{1} on K_{1} to r_{2} on K_{2} over the "bridge" k.

It is not as clear, however, whether the following stronger form of the Fusion Lemma is true.

Proposition P. Let K_{1}, K_{2} be compact sets in \mathbb{C} with $k=K_{1} \cap K_{2} \neq \varnothing$. Assume that two rational functions r_{1}, r_{2} are given with $\left|r_{1}(z)-r_{2}(z)\right| \leqslant 1$ for $z \in k$. Then there is a rational function r with
$\left|r(z)-r_{1}(z)\right| \leqslant A \quad\left(z \in K_{1}\right) \quad$ and $\quad\left|r(z)-r_{2}(z)\right| \leqslant A \quad\left(z \in K_{2}\right)$,
where A depends on K_{1}, K_{2} only.
It is the purpose of this note to study this proposition. It will turn out that it is false even in very simple geometric situations. In Section 3 we remark on the simultaneous approximation of two holomorphic functions in two adjacient regions.

2. Study of Proposition P

First, we notice that Proposition P is true if

$$
\begin{equation*}
\left(K_{1} \backslash k\right)^{-} \text {and }\left(K_{2} \backslash k\right)^{-} \text {are disjoint sets. } \tag{2.1}
\end{equation*}
$$

(Here M^{-}means the closure of M.) Indeed, if we use the sets $\left(K_{1} \backslash k\right)^{-}$and $\left(K_{2} \backslash k\right)^{-}$for K_{1} and K_{2} in Roth's Lemma, we get (1.2) from (1.1). Criterion (2.1) can be applied, for example, if K_{1} and K_{2} are two overlapping rectangles such that $K_{1} \backslash\left(K_{1} \cap K_{2}\right)$ and $K_{2} \backslash\left(K_{1} \cap K_{2}\right)$ are at positive distance.

Second, Proposition P is also true if

$$
\begin{gather*}
K_{1} \cap K_{2} \text { is a finite point set }\left\{z_{1}, z_{2}, \ldots, z_{k}\right\} \\
K_{1} \cup K_{2} \text { has a complement }\left(K_{1} \cup K_{2}\right)^{c} \text { consisting } \tag{2.2}\\
\text { of a finite number of components. }
\end{gather*}
$$

To prove this, assume first that r_{1}, r_{2} have no poles on K_{1}, K_{2}, respectively. Find a polynomial p with $p\left(z_{j}\right)=r_{2}\left(z_{j}\right)-r_{1}\left(z_{j}\right)(j=1,2, \ldots, k)$ satisfying $|p(z)| \leqslant M\left(z \in K_{1} \cup K_{2}\right)$ for a suitable constant M depending on K_{1}, K_{2} only. The function

$$
\begin{aligned}
F(z) & =r_{1}(z) & & \left(z \in K_{1}\right), \\
& =r_{2}(z)-p(z) & & \left(z \in K_{2}\right),
\end{aligned}
$$

will then be holomorphic on $\left(K_{1} \cup K_{2}\right)^{0}$ and continuous on $K_{1} \cup K_{2}$. Using the second part of (2.2), we find a rational function r with $|r(z)-F(z)| \leqslant 1$ $\left(z \in K_{1} \cup K_{2}\right)$ from which (1.2) follows with $A=M+1$.

If r_{1}, r_{2} have poles on K_{1}, K_{2}, let h be the sum of the singular parts of r_{1} on K_{1} plus the sum of the singular parts of r_{2} on $K_{2} \backslash k$. Then $r_{1}-h$ will be rational and holomorphic on K_{1} and $r_{2}-h$ on K_{2}. Notice that r_{1} and r_{2} have the same singular parts on k since $\left\|r_{1}-r_{2}\right\|_{k} \leqslant 1$. Now, since Proposition P is already proved for $r_{1}-h$ and $r_{2}-h$ instead of r_{1}, r_{2}, we get a rational function r such that

$$
\left|(r+h)-r_{1}\right| \leqslant A \quad \text { on } \quad K_{1} \quad \text { and } \quad\left|(r+h)-r_{2}\right| \leqslant A \quad \text { on } \quad K_{2}
$$

as was claimed above.
That Proposition P is not true in general was pointed out first by Paul Gauthier (see [1, p. 116]). The two compact sets K_{1}, K_{2} were, however, rather complicated, and the question arose whether it was true for a simple geometric configuration. It is our main object to show that Proposition P is false even if K_{1} and K_{2} are two adjoining squares.

Theorem 1. Let K_{1} and K_{2} be the two closed squares in the upper and lower half planes, respectively, which have $I=[-1,+1]$ as a common edge. Then Proposition P is false.

For the proof we shall need the following:

Lemma. Given $M>0$ there exists a polynomial P with

$$
P(0)=0, \quad|P(x)| \leqslant 1 \quad \text { for } \quad x \in[-1,+1]
$$

and

$$
\left|\int_{-1}^{1} \frac{P(x)}{x} d x\right| \geqslant M
$$

Proof. Let $0<\delta<1$ and consider the auxiliary function

$$
\begin{aligned}
& h_{\delta}(x)=1 /|x| \quad \text { for } \quad \delta \leqslant|x| \leqslant 1, \\
& =1 / \delta \quad \text { for } \quad 0 \leqslant|x| \leqslant \delta .
\end{aligned}
$$

Choose δ so small that $\int_{-1}^{1} h_{\delta}(x) d x \geqslant 2 M+2$, and keep δ fixed. By Weierstrass' theorem, there is a polynomial p with $\left|h_{\delta}(x)-p(x)\right| \leqslant 1$ for $|x| \leqslant 1$. We then have

$$
|p(x)| \leqslant 1 /|x|+1 \leqslant 2 /|x| \quad \text { for } \quad|x| \leqslant 1
$$

and

$$
\left|\int_{-1}^{1} p(x) d x\right| \geqslant \int_{-1}^{1} h_{\delta}(x) d x-2 \geqslant 2 M
$$

If therefore $P(x)=x p(x) / 2$, we get $P(0)=0,|P(x)| \leqslant 1$ for $|x| \leqslant 1$ and $\left|\int_{-1}^{1}(P(x) / x) d x\right|=\frac{1}{2}\left|\int_{-1}^{1} p(x) d x\right| \geqslant M$.

Proof of Theorem 1. Assume that Proposition P holds for the compact squares K_{1} and K_{2} with an absolute constant A. Choose a polynomial P according to our lemma for an $M>24 A$, and consider the functions P on $K_{1}, 0$ on K_{2}, so that $|P(x)| \leqslant 1$ for $x \in k=K_{1} \cap K_{2}=I$. Assume now that there exists a function H holomorphic on $K_{1} \cup K_{2}$ such that

$$
|H(z)-P(z)| \leqslant A \quad\left(z \in K_{1}\right) \quad \text { and } \quad|H(z)-0| \leqslant A \quad\left(z \in K_{2}\right)
$$

as required by Proposition P. Putting $H_{1}=H-H(0)$ we have $H_{1}(0)=0$ and

$$
\left|H_{1}(z)-P(z)\right| \leqslant 2 A \quad\left(z \in K_{1}\right) \quad \text { and } \quad\left|H_{1}(z)\right| \leqslant 2 A \quad\left(z \in K_{2}\right)
$$

Now put $C_{1}=\partial K_{1} \cap\{z: \operatorname{Im} z>0\}$ and $C_{2}=\partial K_{2} \cap\{z: \operatorname{Im} z<0\}$. By Cauchy's theorem

$$
0=\int_{C_{1} \cup C_{2}} \frac{H_{1}(z)}{z} d z=\int_{C_{1}} \frac{H_{1}(z)-P(z)}{z} d z+\int_{C_{1}} \frac{P(z)}{z} d z+\int_{C_{2}} \frac{H_{1}(z)}{z} d z .
$$

The first and the last integrals on the right are in absolute value $\leqslant 2 A \cdot 6$ each, whereas,

$$
\int_{C_{1}} \frac{P(z)}{z} d z=\int_{C_{1} \cup I} \frac{P(z)}{z} d z-\int_{I} \frac{P(z)}{z} d z=0-\int_{I} \frac{P(z)}{z} d z
$$

Hence we would get $\left|\int_{I}(P(z) / z) d z\right| \leqslant 24 A$ against the choice of the polynomial P.

3. Approximation of Holomorphic Functions in Adjacent Regions

We shall finally show that Proposition P can be partially saved if in (1.2) we stay away from the common part $k=K_{1} \cap K_{2}$.

Theorem 2. We assume for simplicity that K_{1} and K_{2} are two compact sets in \mathbb{C} bounded by two rectifiable Jordan curves, and that $K_{1} \cap K_{2}$ is a rectifiable Jordan arc γ of length L. Let f_{j} be continuous on K_{j} and holomorphic on K_{j}^{0} and assume that $\left|f_{1}(z)-f_{2}(z)\right| \leqslant \varepsilon$ for $z \in \gamma$. Then there is a function F holomorphic on $\left(K_{1} \cup K_{2}\right)^{0}$ such that

$$
\begin{equation*}
\left|F(z)-f_{j}(z)\right| \leqslant L \varepsilon / 2 \pi d_{z} \quad \text { for } \quad z \in K_{j}^{0}, \quad j=1,2, \tag{3.1}
\end{equation*}
$$

where d_{z} denotes the distance from z to γ.
For $\varepsilon=0$ we obtain the principle of continuity. Equation (3.1) expresses the fact that F will approximate f_{j} in K_{j}^{0} if z stays away from $K_{1} \cap K_{2}$. Section 2 showed that the factor of ε cannot be chosen independently of z.

Proof. We put $C_{1}=\partial K_{1} \backslash \gamma$ and $C_{2}=\partial K_{2} \backslash \gamma$ so that $C_{1} \cup C_{2}=C$ is the positively oriented boundary of $K_{1} \cup K_{2}$. Let

$$
F(z)=\frac{1}{2 \pi i} \int_{c_{1}} \frac{f_{1}(\zeta)}{\zeta-z} d \zeta+\frac{1}{2 \pi i} \int_{C_{2}} \frac{f_{2}(\zeta)}{\zeta-z} d \zeta \quad(z \notin C)
$$

which is holomorphic in $\left(K_{1} \cup K_{2}\right)^{0}$. If $z \in K_{1}^{0}$,

$$
\begin{aligned}
F(z)= & \frac{1}{2 \pi i} \int_{C_{1} \cup \gamma} \frac{f_{1}(\zeta)}{\zeta-z} d \zeta+\frac{1}{2 \pi i} \int_{C_{2} \cup-\gamma} \frac{f_{2}(\zeta)}{\zeta-z} d \zeta \\
& -\frac{1}{2 \pi i} \int_{\gamma} \frac{f_{1}(\zeta)-f_{2}(\zeta)}{\zeta-z} d \zeta \\
= & f_{1}(z)+0-\frac{1}{2 \pi i} \int_{\gamma}
\end{aligned}
$$

and the latter term is in absolute value $\leqslant(1 / 2 \pi)\left(\varepsilon / d_{z}\right) L$; similarly, if $z \in K_{2}^{0}$.

Reference

1. D. Gaier, "Vorlesungen über Approximation im Komplexen," Birkhäuser, Basel/Boston/ Stuttgart, 1980.
