Remarks on Alice Roth's Fusion Lemma

DIETER GAIER

Mathematisches Institut der Universität Giessen, 63 Giessen, West Germany Communicated by Richard S. Varga Received February 3, 1982

1. INTRODUCTION

In the study of rational approximation in the complex plane a fundamental role is played by the so-called "Fusion Lemma" of Alice Roth (see [1, p. 113 ff]). Let K_1, K_2, k be compact sets in \mathbb{C} with $K_1 \cap K_2 = \emptyset$. Then there exists a constant A depending on K_1, K_2 only such that: Given two rational functions r_1, r_2 with

$$|r_1(z) - r_2(z)| \leq 1 \qquad (z \in k),$$

there exists another rational function r with

$$|r(z) - r_1(z)| \leq A$$
 $(z \in K_1 \cup k)$ and $|r(z) - r_2(z)| \leq A$ $(z \in K_2 \cup k)$.
(1.1)

It is easily seen that the important case is when k meets both K_1 and K_2 . We can say, then, that r connects r_1 on K_1 to r_2 on K_2 over the "bridge" k.

It is not as clear, however, whether the following stronger form of the Fusion Lemma is true.

PROPOSITION P. Let K_1, K_2 be compact sets in \mathbb{C} with $k = K_1 \cap K_2 \neq \emptyset$. Assume that two rational functions r_1, r_2 are given with $|r_1(z) - r_2(z)| \leq 1$ for $z \in k$. Then there is a rational function r with

$$|r(z) - r_1(z)| \leq A$$
 $(z \in K_1)$ and $|r(z) - r_2(z)| \leq A$ $(z \in K_2)$, (1.2)

where A depends on K_1, K_2 only.

It is the purpose of this note to study this proposition. It will turn out that it is false even in very simple geometric situations. In Section 3 we remark on the simultaneous approximation of two holomorphic functions in two adjacient regions.

FUSION LEMMA

2. STUDY OF PROPOSITION P

First, we notice that Proposition P is true if

$$(K_1 \setminus k)^-$$
 and $(K_2 \setminus k)^-$ are disjoint sets. (2.1)

(Here M^- means the closure of M.) Indeed, if we use the sets $(K_1 \setminus k)^-$ and $(K_2 \setminus k)^-$ for K_1 and K_2 in Roth's Lemma, we get (1.2) from (1.1). Criterion (2.1) can be applied, for example, if K_1 and K_2 are two overlapping rectangles such that $K_1 \setminus (K_1 \cap K_2)$ and $K_2 \setminus (K_1 \cap K_2)$ are at positive distance.

Second, Proposition P is also true if

$$K_1 \cap K_2 \text{ is a finite point set } \{z_1, z_2, ..., z_k\}, K_1 \cup K_2 \text{ has a complement } (K_1 \cup K_2)^c \text{ consisting } (2.2) of a finite number of components.}$$

To prove this, assume first that r_1, r_2 have no poles on K_1, K_2 , respectively. Find a polynomial p with $p(z_j) = r_2(z_j) - r_1(z_j)$ (j = 1, 2, ..., k) satisfying $|p(z)| \leq M$ $(z \in K_1 \cup K_2)$ for a suitable constant M depending on K_1, K_2 only. The function

$$F(z) = r_1(z) (z \in K_1), = r_2(z) - p(z) (z \in K_2),$$

will then be holomorphic on $(K_1 \cup K_2)^0$ and continuous on $K_1 \cup K_2$. Using the second part of (2.2), we find a rational function r with $|r(z) - F(z)| \le 1$ $(z \in K_1 \cup K_2)$ from which (1.2) follows with A = M + 1.

If r_1, r_2 have poles on K_1, K_2 , let *h* be the sum of the singular parts of r_1 on K_1 plus the sum of the singular parts of r_2 on $K_2 \setminus k$. Then $r_1 - h$ will be rational and holomorphic on K_1 and $r_2 - h$ on K_2 . Notice that r_1 and r_2 have the same singular parts on *k* since $||r_1 - r_2||_k \leq 1$. Now, since Proposition P is already proved for $r_1 - h$ and $r_2 - h$ instead of r_1, r_2 , we get a rational function *r* such that

$$|(r+h)-r_1| \leq A$$
 on K_1 and $|(r+h)-r_2| \leq A$ on K_2

as was claimed above.

That Proposition P is not true in general was pointed out first by Paul Gauthier (see [1, p. 116]). The two compact sets K_1, K_2 were, however, rather complicated, and the question arose whether it was true for a simple geometric configuration. It is our main object to show that Proposition P is false even if K_1 and K_2 are two adjoining squares.

THEOREM 1. Let K_1 and K_2 be the two closed squares in the upper and lower half planes, respectively, which have I = [-1, +1] as a common edge. Then Proposition P is false.

For the proof we shall need the following:

LEMMA. Given M > 0 there exists a polynomial P with

$$P(0) = 0, |P(x)| \leq 1 \quad for \quad x \in [-1, +1]$$

and

$$\left|\int_{-1}^{1}\frac{P(x)}{x}\,dx\right|\geqslant M.$$

Proof. Let $0 < \delta < 1$ and consider the auxiliary function

$$\begin{aligned} h_{\delta}(x) &= 1/|x| & \text{for} \quad \delta \leqslant |x| \leqslant 1, \\ &= 1/\delta & \text{for} \quad 0 \leqslant |x| \leqslant \delta. \end{aligned}$$

Choose δ so small that $\int_{-1}^{1} h_{\delta}(x) dx \ge 2M + 2$, and keep δ fixed. By Weierstrass' theorem, there is a polynomial p with $|h_{\delta}(x) - p(x)| \le 1$ for $|x| \le 1$. We then have

$$|p(x)| \le 1/|x| + 1 \le 2/|x|$$
 for $|x| \le 1$

and

$$\left|\int_{-1}^{1} p(x) dx\right| \geq \int_{-1}^{1} h_{\delta}(x) dx - 2 \geq 2M.$$

If therefore P(x) = xp(x)/2, we get P(0) = 0, $|P(x)| \le 1$ for $|x| \le 1$ and $|\int_{-1}^{1} (P(x)/x) dx| = \frac{1}{2} |\int_{-1}^{1} p(x) dx| \ge M$.

Proof of Theorem 1. Assume that Proposition P holds for the compact squares K_1 and K_2 with an absolute constant A. Choose a polynomial P according to our lemma for an M > 24A, and consider the functions P on K_1 , 0 on K_2 , so that $|P(x)| \leq 1$ for $x \in k = K_1 \cap K_2 = I$. Assume now that there exists a function H holomorphic on $K_1 \cup K_2$ such that

$$|H(z) - P(z)| \leq A$$
 $(z \in K_1)$ and $|H(z) - 0| \leq A$ $(z \in K_2)$

as required by Proposition P. Putting $H_1 = H - H(0)$ we have $H_1(0) = 0$ and

 $|H_1(z) - P(z)| \leq 2A$ $(z \in K_1)$ and $|H_1(z)| \leq 2A$ $(z \in K_2)$.

Now put $C_1 = \partial K_1 \cap \{z : \text{Im } z > 0\}$ and $C_2 = \partial K_2 \cap \{z : \text{Im } z < 0\}$. By Cauchy's theorem

$$0 = \int_{C_1 \cup C_2} \frac{H_1(z)}{z} \, dz = \int_{C_1} \frac{H_1(z) - P(z)}{z} \, dz + \int_{C_1} \frac{P(z)}{z} \, dz + \int_{C_2} \frac{H_1(z)}{z} \, dz.$$

The first and the last integrals on the right are in absolute value $\leq 2A \cdot 6$ each, whereas,

$$\int_{C_1} \frac{P(z)}{z} dz = \int_{C_1 \cup I} \frac{P(z)}{z} dz - \int_I \frac{P(z)}{z} dz = 0 - \int_I \frac{P(z)}{z} dz.$$

Hence we would get $\left|\int_{I}(P(z)/z) dz\right| \leq 24A$ against the choice of the polynomial P.

3. Approximation of Holomorphic Functions in Adjacent Regions

We shall finally show that Proposition P can be partially saved if in (1.2) we stay away from the common part $k = K_1 \cap K_2$.

THEOREM 2. We assume for simplicity that K_1 and K_2 are two compact sets in \mathbb{C} bounded by two rectifiable Jordan curves, and that $K_1 \cap K_2$ is a rectifiable Jordan arc γ of length L. Let f_j be continuous on K_j and holomorphic on K_j^0 and assume that $|f_1(z) - f_2(z)| \leq \varepsilon$ for $z \in \gamma$. Then there is a function F holomorphic on $(K_1 \cup K_2)^0$ such that

$$|F(z) - f_j(z)| \leq L\varepsilon/2\pi d_z \quad \text{for} \quad z \in K_j^0, \quad j = 1, 2, \tag{3.1}$$

where d_z denotes the distance from z to γ .

For $\varepsilon = 0$ we obtain the principle of continuity. Equation (3.1) expresses the fact that F will approximate f_j in K_j^0 if z stays away from $K_1 \cap K_2$. Section 2 showed that the factor of ε cannot be chosen independently of z.

Proof. We put $C_1 = \partial K_1 \setminus \gamma$ and $C_2 = \partial K_2 \setminus \gamma$ so that $C_1 \cup C_2 = C$ is the positively oriented boundary of $K_1 \cup K_2$. Let

$$F(z) = \frac{1}{2\pi i} \int_{C_1} \frac{f_1(\zeta)}{\zeta - z} d\zeta + \frac{1}{2\pi i} \int_{C_2} \frac{f_2(\zeta)}{\zeta - z} d\zeta \qquad (z \notin C)$$

which is holomorphic in $(K_1 \cup K_2)^0$. If $z \in K_1^0$,

$$F(z) = \frac{1}{2\pi i} \int_{C_1 \cup \gamma} \frac{f_1(\zeta)}{\zeta - z} d\zeta + \frac{1}{2\pi i} \int_{C_2 \cup -\gamma} \frac{f_2(\zeta)}{\zeta - z} d\zeta$$
$$- \frac{1}{2\pi i} \int_{\gamma} \frac{f_1(\zeta) - f_2(\zeta)}{\zeta - z} d\zeta$$
$$= f_1(z) + 0 - \frac{1}{2\pi i} \int_{\gamma},$$

and the latter term is in absolute value $\leq (1/2\pi)(\epsilon/d_z)L$; similarly, if $z \in K_2^0$.

Reference

1. D. GAIER, "Vorlesungen über Approximation im Komplexen," Birkhäuser, Basel/Boston/ Stuttgart, 1980.