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1. INTRODUCTION

In the study of rational approximation in the complex plane a fundamental
role is played by the so-called "Fusion Lemma" of Alice Roth (see [1,
p. 113 ff]). Let K I' K 2' k be compact sets in C with Kin K 2 = 0. Then there
exists a constant A depending on KI' K 2 only such that: Given two rational
functions r 1 , r 2 with

there exists another rational function r with

(z E k),

and Ir(z)-r2(z)I~A (zEK2Uk).

(Ll)

It is easily seen that the important case is when k meets both K 1 and K 2'

We can say, then, that r connects rl on K 1 to r2 on K 2 over the "bridge" k.
It is not as clear, however, whether the following stronger form of the

Fusion Lemma is true.

PROPOSITION P. Let K 1 , K 2 be compact sets in C with k = Kin K 2 =1= 0.
Assume that two rational functions rl'r2 are given with \rl(z) - riz)1 ~ 1
for z E k. Then there is a rational function r with

and Ir(z) - riz)1 ~A (z E K 2), (1.2)

where A depends on K I' K 2 only.

It is the purpose of this note to study this proposition. It will turn out that
it is false even in very simple geometric situations. In Section 3 we remark
on the simultaneous approximation of two holomorphic functions in two
adjacient regions.
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2. STUDY OF PROPOSITION P

First, we notice that Proposition P is true if

(K1\k)- and (Kz\k)- are disjoint sets.

247

(2.1 )

(Here M- means the closure of M.) Indeed, if we use the sets (K1\k)- and
(Kz\k)- for K 1 and K z in Roth's Lemma, we get (1.2) from (1.1). Criterion
(2.1) can be applied, for example, if K 1 and K z are two overlapping
rectangles such that K1\(K1nKz) and Kz\(K1nKz) are at positive distance.

Second, Proposition P is also true if

K 1n K z is afinite point set {z l' zz,"" zd,
K 1 UKz has a complement (K 1 UKzy consisting (2.2)

ofa finite number ofcomponents.

To prove this, assume first that rI' rz have no poles on K l' K z, respec
tively. Find a polynomial p with p(Zj) = rz(zj) - rl(zj) (j = 1,2,..., k)
satisfying Ip(z)1 ~ M (z E K 1 UKz) for a suitable constant M depending on
K1'KZ only. The function

F(z) = rl(z)

= rz<z) - p(z)

will then be holomorphic on (K 1UKz)O and continuous on K 1UKz. Using
the second part of (2.2), we find a rational function r with Ir(z) - F(z)1 ~ 1
(z E K 1 UKz) from which (1.2) follows with A = M + 1.

If rI' rz have poles on K I' Kz' let h be the sum of the singular parts of r1

on K 1 plus the sum of the singular parts of rz on Kz\k. Then r l - h will be
rational and holomorphic on K 1and rz - h on K z. Notice that r l and rz have
the same singular parts on k since Ilr l - rzll k ~ 1. Now, since Proposition P
is already proved for r1 - hand rz - h instead of rI' rz' we get a rational
function r such that

and

as was claimed above.
That Proposition P is not true in general was pointed out first by Paul

Gauthier (see [1, p. 116D. The two compact sets K l' K z were, however,
rather complicated, and the question arose whether it was true for a simple
geometric configuration. It is our main object to show that Proposition P is
false even if K 1 and K z are two adjoining squares.
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THEOREM 1. Let K I and K 2 be the two closed squares in the upper and
lower half planes, respectively, which have 1= [-1, +1] as a common edge.
Then Proposition P is false.

For the proof we shall need the following:

LEMMA. Given M >0 there exists a polynomial P with

and

P(O) = 0, [P(x)j ~ 1 for x E [-1, +1]

Proof Let 0 <0 < 1 and consider the auxiliary function

h8(x) = l/jxl
= 1/0

for 0~ Ixl ~ 1,

for 0 ~ Ix I~ o.

Choose 0 so small that f~lh8(x)dx~2M+2, and keep 0 fixed. By
Weierstrass' theorem, there is a polynomial p with Ih8(x) - p(x)\ ~ 1 for
[xl ~ 1. We then have

and

[p(x)1 ~ 1/lxl + 1~ 2/lxl for Ixl ~ 1

If therefore P(x) = xp(x)/2, we get P(O) =0, IP(x)1 ~ 1 for Ixl ~ 1 and
If~l(p(x)/x)dxl =! If~1 p(x) dxl ~ M.

Proof of Theorem 1. Assume that Proposition P holds for the compact
squares K I and K 2 with an absolute constant A. Choose a polynomial P
according to our lemma for an M > 24A, and consider the functions P on
K n 0 on K 2 , so that IP(x)l~ 1 for xEk=K I 0OK2 =I. Assume now that
there exists a function H holomorphic on K I U K 2 such that

IH(z) - P(z)1 ~ A (z E K I) and IH(z) - 01 ~A (z E K 2 )

as required by Proposition P. Putting HI = H - H(O) we have HI(O) = 0 and

and
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Now put CI=oKI('){z:Imz>O} and C2=oK2(') {z:Imz <O}. By
Cauchy's theorem

The first and the last integrals on the right are in absolute value ~ 2A . 6
each, whereas,

f
P(z) dz=f P(z) dz-f P(z) dz=O-f P(z) dz.

Cl Z ClUJ Z J Z J Z

Hence we would get IfJ(P(z)/z) dz I~ 24A against the choice of the
polynomial P.

3. ApPROXIMATION OF HOLOMORPHIC FUNCTIONS

IN ADJACENT REGIONS

We shall finally show that Proposition P can be partially saved if in (1.2)
we stay away from the common part k = K I (') K 2'

THEOREM 2. We assume for simplicity that K I and K 2 are two compact
sets in C bounded by two rectifiable Jordan curves, and that K I (') K 2 is a
rectifiable Jordan arc Y of length L. Let Jj be continuous on K j and
holomorphic on KJ and assume that Ifl(z) - f2(z)1 ~ e for z E y. Then there
is a function F holomorphic on (K IUK2)° such that

IF(z) - Jj(z)1 ~ Le/27Cdz for z E KY, j= 1,2,. (3.1 )

where dz denotes the distance from z to y.

For e = 0 we obtain the principle of continuity. Equation (3.1) expresses
the fact that F will approximate Jj in KJ if z stays away from K I (') K 2'

Section 2 showed that the factor of e cannot be chosen independently of z.

Proof We put CI = oKI\y and C2 = oK2\y so that CI U C2 = C is the
positively oriented boundary of K I UK2' Let

F(z)=~f flm d(+~f f2«() d(
2m Cl (- z 2m C2 (- Z

(z fl. C)
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which is holomorphic in (K I U K 2)o• If z E K~ ,

F(z) = _1. f 11(') d' +_1.f Ii') d'
2m C,uy' - z 2m C2 U -y' - Z

__1 f11(') - liO d'
2ni y ,- Z

=/1(z)+O- 2
1

. f,m y

and the latter term is in absolute value ~ (1/2n)(e/dz )L; similarly, if z E K~.
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